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ABSTRACT 

Self-supporting lattice towers are used mainly for supporting telecommunication antennae, wind turbines and high-voltage electrical transmission 
infrastructure. The four-legged self-supporting towers are widely used worldwide mainly for telecommunication purposes to increase coverage and 
network consistency. The failure of such structure could lead to loss of lives and property, as well as disruption of services. The dynamic analysis of self-
supporting lattice towers therefore demands a high degree of reliability. In view of their significant role, it is necessary to evolve alternative methods of 
dynamic analysis of self-supporting lattice towers which will give acceptable results. 

This paper proposes a model for the determination of the natural vibration frequencies of self-supporting lattice towers subjected to the dynamic action 
of wind loads. The proposed model idealizes the lattice tower as an equivalent solid beam-column whose cross-sectional dimensions are the unknowns 

to be determined. The expression fo =  πb2

102  � E
3m

      is proposed by the model for the computation of the fundamental natural vibration frequency of self-

supporting lattice towers whose equivalent beam-column structure has a dimension of b at its free end.  
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1.0 INTRODUCTION 
 
Towers are tall steel frame structures used for different 
purposes such as installation of equipment for 
telecommunication, radio transmission, satellite 
reception, air traffic control, television transmission, 
power transmission, flood lights, meteorological 
measurements, etc. 
Lattice towers act as vertical trusses and resist wind by 
cantilever action. The bracing members, which are 
arranged in many forms, are designed to resist tensile 
or compressive forces. The height of a tower is 
normally several times larger than the horizontal 
dimensions. Towers are therefore more likely to fail by 
bending due to the horizontal action of wind. They act 
as cantilever trusses since they are usually clamped at 
the base, and are designed to carry wind and seismic 
loads. The vertical load is as a result of self-weight and 
the equipment installed on the tower. 
This paper proposes a model for the determination of 
the natural vibration frequencies of self-supporting 
lattice towers by replacing the actual tower with an 

equivalent beam-column. In natural frequency 
calculations, the designer is interested in all those 
frequencies which are likely to coincide with the 
frequencies of the applied forces (such as that due to 
wind, seismic forces, vibrating machinery, etc.) which 
have sufficient energy to excite one or more of the 
natural frequencies of the structure. The main concept 
used in determining the natural frequency is that if an 
applied vibratory force with a frequency equal to the 
natural frequency of the structure acts on the structure, 
then the structure resonates. In the absence of 
damping, when the structure is resonating, the 
displacements tend to infinity. 
 
 
 

2.0 STRUCTURAL MODELLING 
The structural model is a solid beam-column of exactly 
the same height and lateral deflection curve as the 
actual self-supporting lattice tower. The cross sections 
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of both the self-supporting tower and the equivalent 
structure should be similar but must not be equal in 

dimensions. (Fig. 1) 

  

   

 

  

 

 

 

 

   

 

 

  

               

 

 

 

  

 

 

 

Since the self-supporting truss tower is normally prevented 
from movement at its base, the equivalent solid beam-
column is analysed as a linearly-varying cantilever beam. 
The equivalent beam-column is assumed to have the same 
values of lateral deflection (sway) under the action of the 
same applied loads at exactly the same points along its 
length as the self-supporting lattice tower. The analysis 
thus considers the failure of the tower structure as a whole, 
rather than the failure of the individual truss members. 

3.0 MATHEMATICAL MODELLING 

 
The analysis consists of the following steps 
(i) Select an appropriate structural model 

(equivalent solid beam-column) that best suits 
the actual structure (self-supporting lattice 
tower) under consideration. The model must 
have exactly the same height and cross-
sectional shape as the actual structure. 

(ii) Perform an analysis of the actual self-
supporting lattice tower with the given 
dimensions and loadings to determine the 

b 

h 

α2 α2 

Bo 

b) Equivalent solid beam-column 
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a) Self-supporting lattice tower 

Section α1 – α1 

 

Section α2 – α2 

 Fig. 1 – Structural modelling of lattice tower 
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numerical values of lateral deflection (sway) 
along its length. 

(iii) Using the determined deflection valves at 
known points on the actual structure, 
determine the unknown cross-sectional 
dimensions of the equivalent solid beam-
column by equating deflections at the same 
points along the length of the equivalent 
structure. Thus, the self-supporting lattice 
tower and the equivalent solid beam-column 
have to be analyzed under the action of the 

same loadings acting at the same points and 
direction. 

(iv) Perform a dynamic analysis of the equivalent 
solid beam-column to determine its natural 
vibration frequencies. 
  

    3.1    Cross-Sectional Properties Of The Equivalent 
Solid Beam-Column 

Consider a solid beam-column structure of height 
h with a linearly-tapering cross-section and fixed at 
its base, (Fig. 2) 

 
  

 

  

 

  

  

 

 

 

 

A horizontal force P is applied at its free end. The bending 
moment along the cantilever solid beam is 

Mx = P (h - x)                                                                              (1) 

From theory of structures, strain energy due to the applied 
load is 

UB = ∫ Mx
2  dx

2EI x
                                                                         (2) 

From Castigliano’s theorem, the deflection of the member is 
expressed as 

δB  = ∂UB
∂P

 = ∫ Mx
EI x

∂Mx
∂P

dx                                                  (3) 

 

 

 

 

 

 

 

 

 

 

Fig.2- Solid beam-column with linearly-tapering cross-section 
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The linearly-tapering dimension of the beam-column can be 
expressed as 

Bx = a + cx                                                                                   (4) 

where BX is the width of the cross-section at any point x 
along the length of the equivalent beam-column structure. 
To determine the values of the constants a and c in Eq.(4), 
we need to consider the boundary conditions of the 
equivalent beam-column structure under consideration, 
(Fig.3): 

(i)  At x = 0 (base), Bx = Bo 

 (ii) At x = h (top), Bx = b 

∴  BX = B0h+(b−B0)x
h

                                                  (5) 

The moment of inertia for the equivalent solid beam can be 
expressed in terms of BX. 

Moment of Inertia, Ix = Bx (Bx )3

12
 

i.e. Ix = [Bo h+ (b−Bo )x]
12h4

4
                                                                  (6) 

Putting Boh = αo and b – Bo = β 

Then the expressions for Bx and Ix can be expressed as 
follows: 

Bx =  α0+ βx
h

                                                                                   (7) 

Ix =  (α0+ βx)4

12h4                                                                                 (8) 

The strain energy of the equivalent structure is given by 
Eq.(2): 

i.e UB = ∫ Mx
2  dx

2EI x
 

Substituting for Mx and Ix in the strain energy equation: 

UB(x) = 6P2h4

E ∫ (h−x)2

(α0+ βx)4 dx                                                         (9) 

From Castigliano’s theorem, the deflection of the equivalent 
structure is given by Eq.(3): 

YE(x) = ∂UB (x)
∂P

 = ∫ Mx
EI x

(∂Mx
∂P

) dx 

But   Mx = P (h - x) and Ix = (α0+ βx)4

12h4  

Bx 

Bx 

Bo 

h 

b 

α1 α1 

a) Solid beam-column 

b) Section α - α  

Fig.3 –Cross-sectional dimensions of the equivalent beam-column 
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Thus, ∂Mx
∂P

 = h-x 

∴  YE(x) = ∫ Mx
EI x

(∂Mx
∂P

)dx 

i.e. YE = 12h4P
E ∫ (h−x)2

(α0+ βx)4 dx                                                       (10) 

Integrating by partial fractions, 

YE (x) = (−12h4P
Eβ3 ) .  [ 1

(α0+βx)
 – �α0+ βh�

�α0+ βx�2 +  �α0+ βh�
2

3(α0+ βx)3  −  1
α0

+

 �α0+ βh�
α02 −  (α0+ βh)2

3α0
3  ]                                                                 (11) 

where 

αo  = Boh 

β = b – Bo 

The proposed model (i.e the beam-column) can only be said 
to be equivalent to the actual self-supporting lattice tower if 
its deflection curve under the action of the same loading is 
the same as that of the actual tower. Therefore, the self 
supporting lattice tower should be analysed statically for 
deflection along its length and the values at x = h and x = h

2
 

equated to the above expression for deflection of the 
equivalent solid beam-column (i.e Eq.12) to determine the 
unknown values of its cross-section, b and Bo. 

If the deflection of the free end (tip) is Y, then putting x = h 
in Eq.(11), and noting that 

αo  = Boh and β = b – Bo, we get 

Y1 = 4h3P
Eb Bo

3 

  b = C
Y1B0

3                                                                                  (12) 

where    c = 4h3P
E

                                                                       (13) 

If the deflection at the middle is Y1/2, then putting x = h
2
 in 

Eq.(11), we have that: 

α1B0
12 +  α2B0

8 +  α3B0
4 +  α4 = 0                                     (14) 

where,   

α1 =  Y1
3Y1/2 

 α2 = CY1
2 (Y1/2 −  3Y1)       

α3 =  3C2Y1 ( Y1/2 −  Y1)                                                        (15) 

α4 =  C (Y1/2 −  C2Y1) 

The values of b and 𝐵𝐵0 are then determined from Eqns.(12) 
and (14). 

 

  

3.2 Vibration Frequencies Of The Equivalent Beam 

The natural vibration frequencies of the self-supporting 
lattice tower can be determined by considering the flexural 
vibration of the equivalent solid beam (Fig.4): 

 

 

 

 

 

 

Consider an infinitesimal length dx of the beam (Fig. 4b): 

From vertical equilibrium:  

� Q + dQ
dx

dx� −  Q − qdx = 0  

 

b) Elemental beam 

 

O 

M 

Q 

dx 

(M +  dM
dx

 dx) 

(Q +  dQ
dx

 dx) 

q 

x 

y 

a) Beam under flexural 
 

q(t) 

Fig.4 – Flexural Vibration of Beam. 
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i.e dQ
dx
−  q = 0                                                                           (i) 

Taking moments about point O: 

(M + (qdx). dx
2

+  Qdx − �M +  dM
dx

dx� = 0  

i.e    q dx2

2
+  Qdx −  dM

dx
dx = 0   

 Ignoring terms of second order, we have: 

dM
dx
− Q = 0                                                                                (ii) 

Differentiating Eq.(ii) with respect to x: 

d2M
dx 2 −

dQ
dx

= 0  

But from Eqn.(i),     dQ
dx

= q        

∴  d2M
dx 2 = q                                                                                 (16) 

Eq.(16) is the differential equation governing the bending of 
beams. 

From D’Alembert’s principle, 

q = (externally applied load + inertia force) per unit length. 

If a beam with mass per unit length of m is vibrating, then 
the inertia force per unit length is given by 

F = -ma 

where a is the acceleration 

i.e.F = - m ∂2y
∂t2                                                                             (iii) 

Thus, q = (externally applied load -  𝑚𝑚𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2 ) 

where y is the lateral displacement and 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2  is the 

acceleration in the lateral direction. 

 

 

 

Note that partial derivative is used here because the 
displacement y is a function not only of x but also of 
time t. 

The bending moment M is given by 

M = EI 𝜕𝜕
2𝑦𝑦

𝜕𝜕𝑥𝑥2                                                                          (iv) 

Substituting for M and q in the different equation of 
motion, Eq.(16): 

∂2

∂x2 �
EI ∂2y
∂x2 � = �q(t) −  m ∂2y

∂t2 �                                                (v) 

where q(t) is the time-varying external load per unit 
length. 

Considering free vibration, q(t) = 0, Then the 
differential equation for free vibration becomes 

EI ∂4y
∂x4 +  m ∂2y

∂t2 = 0                                                               (vi) 

If the system is undamped, then the motion is simple 
harmonic. Therefore, 

y(x, t) = Y(x)cos ωt   

where Y(x) is the amplitude of motion and ω is the 
circular frequency of vibration. 

Substituting for y in Eq.(iv) and simplifying, the 
differential equation of motion becomes 

EId 4y
dx4 −  mω2Y(x) = 0                            (17) 

where m is the distributed mass per unit length. 

Eq.(17) is the basic differential equation governing the 
undamped free vibration of beams. 

The solution to the above dynamic flexural differential 
equation is given by 

y =  C1Sin λx +  C2Cos λx +  C3 Sinh λx +  C4 Cosh λx  

                                                                                           (18) 

where C1 to C4 are constants of integration to be 
determined from the boundary conditions of the beam. 

       

 

For the cantilever beam, 

(i) y(x) = 0 at x = 0                                                                                                                                            
    θ(x) = 0 at x = 0, and 

(ii) M(x) = 0 at x = h                                                                                                                                                                
Q(x) = 0 at x = h 

where θ(x) =  dy
dx

,  M(x) = −  EIdy
 dx 2  and Q(x) = − EId 3y

dx 3  

λ in Eqn. (18) is given by 
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λ = �mω2

EI

4
                                                                                  (19) 

or    𝜔𝜔 =  𝜆𝜆2�𝐸𝐸𝐸𝐸
𝑚𝑚

    

 or    f =  ω
2π

=  λ2

2π
�EI

m
                                                               (20) 

For a cantilever beam, the natural frequencies occur at λ = 
𝑛𝑛𝑛𝑛
5

, n = 1, 2, 3, 4 

 

Thus, f = �nπ
5
�

2
. 1

2π
�EI

m
 

For a linearly-tapering beam,  I =  Ix =  (α0+ βx)4

12h4   

f = �nπ
5
�

2
. 1

2π
 (α0+βx)2

2h2 � E
3m

  

At the free end of the cantilever, x = h. Noting that 𝛼𝛼𝑜𝑜  = Boh 
and β = b-Bo, then 

f =  n2πb2

100
� E

3m
  

n = 1 for fundamental natural frequency. Thus,                

fo = π
100

b2 � E
3m

                                                                          (21) 

where m is the mass per unit length and b is the cross-
sectional dimension of the equivalent beam at its free end. 

 

4.0 PRESENTATION OF RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The self-supporting lattice tower in Fig. 5 is subjected 
to a horizontal load P1 = 1000KN at its free end (Point 
U). 
The tower has the following properties: 

(i) 128 truss members with total volume = 0.9684m3 
(ii) Density = 7850 kg/m3 
(iii) Young’s Modulus, E = 210 x 106 KN/m2 
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Fig.5 – Self-supporting lattice tower under load 
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Table 1 gives the results of the deflection analysis of the self-supporting lattice tower. 

 

 

From Table 1, 

(i) Deflection at the free end (tip), (x =h) = Y1 = 
0.59133378m 

(ii) Deflection at mid-height, (x = h
2
) = Y1/2 = 

0.073638858m 

From Eq. (13),  c =  4h3P
E

=  4�153�(1000)
210x106 = 0.0643 m5 

From Eqs. (15), 

α1 = 0.0152, α2 =  −0.0382, α3 =  −0.003797, 

 α4 = 0.004578 

Therefore Eq. (14) becomes: 

0.0152 Bo12 – 0.0382Bo8 – 0.003797Bo4 + 0.004578  =  0   

Using Newton-Raphson method, 

Bo = 0.750852 m 

Substituting in Eq. (12),  

b = C
Y1B0

3 = 0.2569 m 

 

 

 

 

 

 

 

 

 

a) Natural 
Frequency of Equivalent 
Beam 

The fundamental natural 
vibration frequency of the 
equivalent beam is given 
by Eq.(21): 

fo = πb2

100
 � E

3m
 

where m is the mass per unit length. 

Considering unit length of the equivalent beam 
(frustum), 

Then mass per unit length is 

m = ρ[h
3

 (b +  Bo +  �(bBo ) ]   

     =
7850 [15

3
 (0.2569 + 0.750852 +  �(0.2569 × 0.750852)    

     = 56,792.743 kg m⁄   

Thus, fundamental natural vibration frequency is  

fo =  πb2

100
� E

3m
  

     =  π(0.2569)2

100
� 210x109

3(56782 .743)
   

i. e. fo = 2.30 Hz      

b) Natural frequency of the Lattice Tower 

From Table 1, 

The deflection of the free end, Δu = 0.59133378m 

      Force applied at the free end, Fu = 1000 KN 

      Hence, stiffness of the structure, K = Fu
Δu

 =                                                                                         

 1000x103

0.59133378
 

i.e. K = 1691092.296 N m⁄   

S/N Joint Height from base (m) Deflection (m) 
1 U 15.00 0.59133378 
2 S 13.75 0.390101219 
3 Q 12.50 0.292947928 
4 O 11.25 0.19851868 
5 M 10.00 0.146828164 
6 J 7.50 0.073638858 
7 G 5.00 0.029030528 
8 D 2.50 0.004289548 
9 A 0.00 0.00 

Table 1 – Deflection Values for Self-supporting Lattice Tower 
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The mass of the truss tower in Fig. 5 is computed from 
the given information on the cross sectional areas and 
lengths of the 128 truss members 

Mass, M = ρ[∑ AiLi
n
1 ]  

where n = number of truss members 

      ρ = density = 7850 kg m3⁄   

M = 7850 x (0.9684𝑚𝑚3) = 7602 kg 

For the linearly-tapering cantilever tower structure, the 
fundamental natural frequency is given by: (Bhatt et. 
al, 1994) 

f =  c
2π
�K

M
  , where c = 0.975 

=  0.975
2π

 �1691092 .296
7602

  

i. e.    f = 2.31 Hz   

 

The summary of the results is presented in Table 2 
below. 

 

 

Description Lattice Tower Equivalent beam-column % Difference 

Top dimension 1300 mm 256.90 mm  

Base dimension 2380 mm 750.852 mm 

Mass 7602 kg 56792.74 kg/m 

Natural Frequency 2.31 2.30 0.43 

 

5.0 CONCLUSIONS 
A comparison of the fundamental natural vibration 
frequency values of the actual lattice tower and the 
proposed model shows a marginal percentage 
difference of 0.43%.The proposed model is acceptable 
since it gives a lower-bound value of the vibration 
frequency, which is a welcome safeguard against 
resonance. The derived model expressions can also be 
easily modified to analyze towers of different cross-
sectional shapes, such as circular and triangular-
shaped towers. 
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